
Introduction	to	Spark

Shannon	Quinn

(with	thanks	to	Paco Nathan	and	
Databricks)



Quick	Demo



Quick	Demo



API	Hooks
• Scala /	Java
– All	Java	libraries
– *.jar
– http://www.scala-
lang.org

• Python
– Anaconda:	
https://www.anaconda
.com/download/

• …R?
– If	you	really	want	to
– http://spark.apache.or
g/docs/latest/sparkr.ht
ml



Introduction



Spark	Structure
• Start	Spark	on	a	cluster
• Submit	code	to	be	run	on	it





















Another	Perspective



Step	by	step



Step	by	step



Step	by	step



Example:	WordCount



Example:	WordCount



Limitations	of	MapReduce
• Performance	bottlenecks—not	all	jobs	can	be	
cast	as	batch	processes
–Graphs?

• Programming	in	Hadoop is	hard
–Boilerplate	boilerplate	everywhere



Initial	Workaround:	Specialization



Along	Came	Spark
• Spark’s	goal	was	to	generalize	MapReduce to	
support	new	applications	within	the	same	
engine

• Two	additions:
–Fast	data	sharing
–General	DAGs	(directed	acyclic	graphs)

• Best	of	both	worlds:	easy	to	program	&	more	
efficient	engine	in	general



Codebase	Size



More	on	Spark
• More	general
– Supports	map/reduce	paradigm
– Supports	vertex-based	paradigm
– Supports	streaming	algorithms
– General	compute	engine	(DAG)

• More	API	hooks
– Scala,	Java,	Python,	R

• More	interfaces
– Batch	(Hadoop),	real-time	(Storm),	and	
interactive	(???)



Interactive	Shells
• Spark	creates	a	

SparkSession object	
(cluster	information)

• For	either	shell:	spark
• External	programs	use	a	
static	constructor	to	
instantiate	the	context

• Pull	the	SparkContext
out	via	
spark.SparkContext



Interactive	Shells
• spark-shell --master



Interactive	Shells
• Master	connects	to	the	cluster	manager,	which	allocates	
resources	across	applications

• Acquires	executors	on	cluster	nodes:	worker	processes	to	
run	computations	and	store	data

• Sends	app	code	to	executors
• Sends	tasks	for	executors	to	run



Resilient	Distributed	Datasets	(RDDs)
• Resilient	Distributed	Datasets	(RDDs)	are	
primary	data	abstraction	in	Spark
–Fault-tolerant
–Can	be	operated	on	in	parallel
1. Parallelized	Collections
2. Hadoop datasets

• Two	types	of	RDD	operations
1. Transformations	(lazy)
2. Actions	(immediate)



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)
• Can	create	RDDs	from	any	file	stored	in	HDFS
–Local	filesystem
–Amazon	S3
–HBase

• Text	files,	SequenceFiles,	or	any	other	Hadoop
InputFormat

• Any	directory	or	glob
– /data/201414*



Resilient	Distributed	Datasets	(RDDs)
• Transformations
–Create	a	new	RDD	from	an	existing	one
–Lazily evaluated:	results	are	not	
immediately	computed
• Pipeline	of	subsequent	transformations	can	be	
optimized
• Lost	data	partitions	can	be	recovered



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)



Closures	in	Java



Resilient	Distributed	Datasets	(RDDs)
• Actions
–Create	a	new	RDD	from	an	existing	one
–Eagerly evaluated:	results	are	immediately	
computed
• Applies	previous	transformations
• (cache	results?)



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)
• Spark	can	persist	/	cache	an	RDD	in	memory	
across	operations

• Each	slice	is	persisted	in	memory	and	reused	
in	subsequent	actions	involving	that	RDD

• Cache	provides	fault-tolerance:	if	partition	is	
lost,	it	will	be	recomputed	using	
transformations	that	created	it



Resilient	Distributed	Datasets	(RDDs)



Resilient	Distributed	Datasets	(RDDs)



Broadcast	Variables
• Spark’s	version	of	Hadoop’s

DistributedCache
• Read-only	variable	cached	on	each	node
• Spark	[internally]	distributed	broadcast	
variables	in	such	a	way	to	minimize	
communication	cost



Broadcast	Variables



Accumulators
• Spark’s	version	of	Hadoop’s Counter
• Variables	that	can	only	be	added	through	an	
associative	operation

• Native	support	of	numeric	accumulator	types	
and	standard	mutable	collections
–Users	can	extend	to	new	types

• Only	driver	program	can	read accumulator	
value



Accumulators



Key/Value	Pairs



Resources
• Original	slide	deck:	
http://cdn.liber118.com/workshop/itas_work
shop.pdf

• Code	samples:
–https://gist.github.com/ceteri/f2c3486062
c9610eac1d
–https://gist.github.com/ceteri/8ae5b9509a
08c08a1132
–https://gist.github.com/ceteri/11381941



Questions?


