
CSCI 8360: Data Science Practicum
Lecture 4: “Hidden Technical Debt in Machine Learning 

Systems”
D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael 

Young, Jean-Franc	̧ois Crespo, Dan Dennison

Dr. Shannon Quinn



What is “technical debt”?

■ Coined by Ward Cunningham in 1992
– Refers to long-term costs incurred by moving quickly in software engineering

■ Debt metaphor
– Not necessarily a bad thing, but always needs to be serviced

■ Goal: NOT to add new functionality
– Enable future improvements, reduce errors, improve maintainability



What is “technical debt”?



What is “technical debt”?



What is “technical debt”?



What is “technical debt”?



What is “technical debt”?



Causes of technical debt



Technical Debt and Machine Learning

■ All the maintenance problems of “traditional” code
– Plus an additional set of ML-specific concerns

■ Debt can exist at system level, instead of [strictly] code level
– Data influences ML system behavior!
– ”Traditional” abstractions and boundaries can be corrupted

■ “Traditional” methods for paying down code-level debt are not sufficient to address 
ML-specific issues at system level



1: Model Complexity

■ Traditional software engineering: strong abstraction boundaries, 
encapsulation, and modular design

■ Machine learning: desired behavior relies specifically on external data
– The real world does not fit into tidy abstraction rules



1: Model Complexity

■ Entanglement
– ML systems mix signals
– If we change distribution of one input feature, weights of other d – 1 features may 

change as well
– “Changing Anything Changes Everything”

■ Correction Cascades
– We have model ma for problem A, but need a solution for slightly different A’
– Tweak ma to m’a…then need to solve A’’, and so on

■ Undeclared Consumers
– Output of your model ma may be input to some downstream system
– Changes in your model ma will drastically affect performance of downstream 

consumers



2: Data Dependencies

■ Traditional software engineering identifies “dependency debt” as a key contributor 
to overall technical debt

■ Data dependencies in ML systems carry similar debt-building capacity, but with the 
added joy of being more difficult to detect



2: Data Dependencies

■ Unstable Data Dependencies
– Consumed input changes over time
– Input signal comes from another ML system that updates itself
– Engineering ownership of input signal is distinct from ML system consuming it

■ Underutilized Data Dependencies
– Input signals that provide little modeling benefit
– Legacy features, bundled features, correlated features, 𝜖-features



3: Feedback Loops

■ A key feature of ML systems is influencing its own behavior

■ Analysis debt
– Difficult to predict behavior of a given model before release*

* Tay?



3: Feedback Loops

■ Direct Feedback Loops
– Model directly influences selection of its own future training data
– Supervised algorithms

■ Hidden Feedback Loops
– Two systems indirectly influence each other through the world
– Related but distinct recommendation systems—improving one leads to changes in 

the other



4: ML System Anti-patterns

■ How much code in a machine learning system is, well, machine learning?

■ The non-ML code is “plumbing”—the majority, but nonetheless typically an 
afterthought.



4: ML System Anti-patterns



5: Configuration Debt

■ Large systems have wide range of configurable options
– Features used
– Data selection
– Algorithm hyperparameters
– Verification methods
– Pre- and post-processing routines

■ May reach the point of # of lines of configuration >>> # of lines of code



5: Configuration Debt

■ It should be easy to specify a configuration as a small change from a previous 
configuration. 

■ It should be hard to make manual errors, omissions, or oversights. 
■ It should be easy to see, visually, the difference in configuration between two 

models. 
■ It should be easy to automatically assert and verify basic facts about the 

configuration: number of features used, transitive closure of data dependencies, 
etc. 

■ It should be possible to detect unused or redundant settings. 

■ Configurations should undergo a full code review and be checked into a repository. 



6: Changes in the External World

■ Related to #2 ”Data Dependencies” and #3 “Feedback Loops”

■ Fixed Thresholds in Dynamic Systems
– What p(x) will be used to separate “spam” from “not spam”?

■ Monitoring and Testing
– What to monitor?
– Prediction Bias (distribution of predicted labels)
– Action Limits (automated alerts)

■ Upstream Producers
– Any upstream data producers should also be thoroughly and frequently tested



7: Other ML-related Debt

■ Data Testing Debt
– If data == code in ML systems, and code should be tested, then some data should 

be tested as well to monitor for changes in input distributions

■ Reproducibility Debt (Open Science!)
– If frameworks are re-run in identical configurations, should produce identical results

■ Process Management Debt
– Mature systems may have dozens or even hundreds of simultaneous ML models

■ Cultural Debt
– Create a healthy project team culture with a breadth of expertise that rewards good 

engineering practices



Conclusions

■ Measuring technical debt
– No clear metric

■ Simply “moving fast” is not evidence of low debt or good practices
– Moving quickly often introduces technical debt!

■ Useful questions for consideration:
1. How easily can an entirely new algorithmic approach be tested at full scale?
2. How precisely can the impact of a new change to the system be measured?
3. Does improving one model or signal degrade others?
4. How quickly can new members of the team be brought up to speed?



Questions?



P0 Review

■ How was it?



P0 Review: Good Version Control Habits

DON’T
■ Hard-code program arguments 

(read the instructions)

■ Include data or program output in 
version control

■ Use Jupyter notebooks for program 
code

■ Leave commit comments of “p0 
update”

■ Start at the last minute

DO
■ Use tickets (Issues)

■ Leave descriptive commit messages 
(“Fixed bug from ticket #3”)

■ Create CONTRIBUTORS, LICENSE, 
and README files

■ Create a logical directory structure 
(“src”, “examples”, etc)

■ Use Jupyter notebooks and toy data 
sets as examples for new users



https://blog.kentcdodds.com/please-don-t-commit-commented-out-code-53d0b5b26d5f



P0 Review: Commit Messages

■ Actual commit messages from a student

■ …that’s just 1 day’s worth



P0 Review: README

■ Again, an example from a student







P0 Review: Tickets



P0 Review

■ Average score on 
AutoLab as a function of 
hours-to-deadline

■ Yes, R2 isn’t great

■ But seriously: submit 
early, submit often


