
XGBoost: A Scalable Tree 
Boosting System

Tianqi Chen and Carlos Guestrin, University of Washington



XGBoost

� eXtreme Gradient Boosting

� 29 Kaggle challenges with winners in 2015

� 17 used XGBoost

� 8 of these solely used XGBoost; the others 
combined XGBoost with DNNs

� KDDCup 2015

� Every single top 10 finisher used XGBoost



XGBoost Applications

� Store sales prediction

� High energy physics event classification

� Web text classification

� Customer behavior prediction

� Motion detection

� Ad click through rate prediction

� Malware classification

� Product categorization

� Hazard risk prediction

� Massive on-line course dropout rate prediction



Properties of XGBoost

� Single most important factor in its success: scalability
� Due to several important systems and algorithmic optimizations

1. Highly scalable end-to-end tree boosting system

2. Theoretically justified weighted quantile sketch for efficient proposal calculation

3. Novel sparsity-aware algorithm for parallel tree learning

4. Effective cache-aware block structure for out-of-core tree learning



What is “tree boosting”?

� Given a dataset (n 
examples, m features)

� Tree ensemble uses K 
additive functions to 
predict output



What is “gradient boosting”?



Regularized objective function

Objective

2nd order 
approx.

Remove 
constants

Scoring function to 
evaluate quality of 

tree structure



Regularized objective function



Split-finding algorithms

� Exact

� Computationally demanding

� Enumerate all possible splits for continuous features

� Approximate

� Algorithm proposes candidate splits according to percentiles of feature distributions

� Maps continuous features to buckets split by candidate points

� Aggregates statistics and finds best solution among proposals



Comparison of split-finding

� Two variants

� Global

� Local



Shrinkage and column subsampling

� Shrinkage

� Scales newly added weights by a factor !
� Reduces influence of each individual tree

� Leaves space for future trees to improve model

� Similar to learning rate in stochastic optimization

� Column subsampling

� Subsample features

� Used in Random Forests

� Prevents overfitting more effectively than row-sampling



Sparsity-aware split finding

� Equates sparsity with missing values

� Defines a “default” direction: follow 
the observed paths

� Compare to “dense” method



How does this work?

� Features need to be in sorted order to determine splits

� Concept of blocks

� Compressed column (CSC) format

� Each column sorted by corresponding feature value

� Exact greedy algorithm: all the data in a single block

� Data are sorted once before training and used subsequently in this format



Feature transformations in blocks



More on blocks

� Data is stored on multiple blocks, and these blocks are stored on disk

� Independent threads pre-fetch specific blocks into memory to prevent cache misses

� Block Compression

� Each column is compressed before being written to disk, and decompressed on-the-fly when 
read from disk into a prefetched buffer

� Cuts down on disk I/O

� Block Sharding

� Data is split across multiple disks (i.e. cluster)

� Pre-fetcher is assigned to each disk to read data into memory



Cache-aware access

Exact Greedy Algorithm
� Allocate an internal buffer in each thread

� Fetch gradient statistics

� Perform accumulation in mini-batch

� Reduces runtime overhead when number 
of rows is large

Approximate Algorithms
� Choice of block size is critical

� Small block size results in small workloads 
for each thread

� Large block size results in cache misses as 
gradient statistics do not fit in cache



Cache-aware access

Exact Approximate



Results: out of core



Results: distributed



Results: scalability



Demonstration

https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html



Conclusions

� Novel sparsity-aware algorithm for handling sparse data

� Theoretical guarantees for weighted quantile sketching for approximate learning

� Cache access patterns, data compression, and data sharding techniques



http://arxiv.org/abs/1603.02754 


