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O eXtreme Gradient Boostfing

O 29 Kaggle challenges with winners in 2015

O 17 used XGBoost (r{/]lc
VIrDAaned o .
O 8 of these solely used XGBoost: the others [ GBoost eXtreme Gradient BOOStIng

combined XGBoost with DNNs

O KDDCup 2015
O Every single top 10 finisher used XGBoost




XGBoost Applications

Store sales prediction
High energy physics event classification
Web text classification

Customer behavior prediction
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RIS IS XGBoost eXtreme Gradient Boosting
Ad click through rate prediction

Malware classification
Product categorization

Hazard risk prediction
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Massive on-line course dropout rate prediction




Properties of XGBoost

Single most important factor in its success: scalability

Due to several important systems and algorithmic optimizations

. Highly scalable end-to-end tree boosting system
. Theoretically justified weighted quantile sketch for efficient proposal calculation

. Novel sparsity-aware algorithm for parallel tfree learning

. Effective cache-aware block structure for out-of-core tree learning




What is “tree boosting”?

Given a dataset (n
examples, m features)

D = {(xi,¥:)} (|D| = n,x; € R™,y; € R)

Tree ensemble uses K
additive functions fo
predict output
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Figure 1: Tree Ensemble Model. The final predic-
tion for a given example is the sum of predictions
from each tree.
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What is “gradient boosting”?

Gradient Boosting [J. Friedman, 1999]

Statistical view on boosting

® = Generalization of boosting to arbitrary loss functions

Residual fitting

Ground truth

@t~ sklearn.ensemble.GradientBoostingClassifier|Regressor




Regularized objective function
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Regularized objective function
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The smaller the scoreis, the better the structure is

Figure 2: Structure Score Calculation. We only
need to sum up the gradient and second order gra-
dient statistics on each leaf, then apply the scoring
formula to get the quality score.




Split-finding algorithms

O Exact

O Computationally demanding

O Enumerate all possible splits for continuous features

O Approximate

O Algorithm proposes candidate splits according to percentiles of feature distributions
O Maps continuous features to buckets split by candidate points

O Aggregates statistics and finds best solution among proposals




Comparison of split-finding

Two variants
Global

Local

®-® exact greedy
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Figure 3: Comparison of test AUC convergence on
Higgs 10M dataset. The eps parameter corresponds
to the accuracy of the approximate sketch. This
roughly translates to 1 / eps buckets in the proposal.
We find that local proposals require fewer buckets,
because it refine split candidates.




Shrinkage and column subsampling

O Shrinkage
O Scales newly added weights by a factor n
O Reduces influence of each individual tree
O Leaves space for future trees to improve model

O Similar to learning rate in stochastic optimization

O Column subsampling

O Subsample features
O Used in Random Forests

O Prevents overfitting more effectively than row-sampling




Sparsity-aware split finding

Equates sparsity with missing values

Defines a “default” direction: follow
the observed paths

Compare to “dense” method

Basic algorithm
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Figure 5: Impact of the sparsity aware algorithm
on Allstate-10K. The dataset is sparse mainly due
to one-hot encoding. The sparsity aware algorithm
is more than 50 times faster than the naive version
that does not take sparsity into consideration.




How does this work?

O Features need to be in sorted order to determine splits

O Concept of blocks
O Compressed column (CSC) format

O Each column sorted by corresponding feature value

O Exact greedy algorithm: all the data in a single block

O Data are sorted once before training and used subsequently in this format




Feature transformations in blocks

Layout Transformation of one Feature (Column) The Input Layout of Linear scan over presorted columns
Three Feature Columns to find best split

sorted
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More on blocks

O Datais stored on multiple blocks, and these blocks are stored on disk
O Independent threads pre-fetch specific blocks info memory to prevent cache misses

O Block Compression

O Each column is compressed before being written to disk, and decompressed on-the-fly when
read from disk into a prefetched buffer

O Cuts down on disk I/O

O Block Sharding

O Datais split across multiple disks (i.e. cluster)

O Pre-fetcheris assigned to each disk to read data info memory




Cache-aware access

Exact Greedy Algorithm Approximate Algorithmes
O Allocate an internal buffer in each thread O Choice of block size is critical

O Fetch gradient statistics O Small block size results in small workloads

O Perform accumulation in mini-batch for each thread

O Large block size results in cache misses as

O Reduces runtime overhead when number gradient statistics do not fit in cache

of rows is large




Cache-aware access

Approximate
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Results: out of core

Block compression

Basic algorithm
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Resulis: distributed
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(a) End-to-end time cost include data loading
(b) Per iteration cost exclude data loading




Resulis: scalability
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Figure 13: Scaling of XGBoost with different num-
ber of machines on criteo full 1.7 billion dataset.
Using more machines results in more file cache and
makes the system run faster, causing the trend to
be slightly super linear. XGBoost can process the
entire dataset using as little as four machines, and s-
cales smoothly by utilizing more available resources.




Demonsiration

://arogozhnikov.github.io/2016/06/24/gradient boosting explained.himl




Conclusions

O Novel sparsity-aware algorithm for handling sparse data

O Theoretical guarantees for weighted quantile sketching for approximate learning

O Cache access patterns, data compression, and data sharding techniques




arXiv.org > ¢s > arXiv:1603.02754
Computer Science > Learning

XGBoost: A Scalable Tree Boosting System

Tianqi Chen, Carlos Guestrin
(Submitted on 9 Mar 2016 (v1), last revised 10 Jun 2016 (this version, v3))

Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is
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