Spark BigDL

© Intel

Slides based heavily on those by Jason Dai and Ding Ding,
taken from Al Conference 2017 San Francisco

What is BigDL?

BigDL is a deep learning library built
for Apache Spark

APACHE

Make deep learning more accessible Spr K ..

» Write deep learning applications as
standard Spark programs

» Run on existing Spark/Hadoop clusters
(no changes needed)

Feature parity with Caffe, Torch,
TensorFlow :

High-performance Intel MKL library in
tasks, efficient all-reduce and SGD at
scale

» Works with pre-trained Keras, Caffe, Spark Core
or Torch models

DataFrame

Making deep learning accessible

The
- Chasm

Deep learning experts Average users (data engineers, data scientists, analysts, etc.)

BigDL’s Goals

Make deep learning more accessible to big data and data science
communities

Continue the use of familiar software tools (Spark) and hardware infrastructure
(Hadoop clusters) to build deep learning applications

Analyze “big data” using deep learning on the same Hadoop/Spark cluster
where the data are stored

Add deep learning functionalities to the Big Data (Spark) programs and/or
workflow

Leverage existing Hadoop/Spark clusters to run deep learning applications

» Shared with other workloads (e.g., ETL, data warehouse, feature engineering, statistic
machine learning, graph analytics, etc.) in a dynamic and elastic fashion

Case Study: Fraud Detection for UnionPay

: Test Data
Training Data

sampled Spark Pipeline
partition all features selected features
a'e iy a'm

——" Feature b JEIR - —_— —r> B T
Selection Training Evaluation l ‘r.

& Fine Tune

model

candidate model

Engineering

Feature
Engineering

v

Pre- sampled
P processing partition
v

U
—’ Model

sampled - Ensemble
partition .

a'em

—

Feature
Selection

normal

Spark Pipeline

Predictions

s

Hive Table Spark DataFrame Neural Network Model Using BigDL

https://mp.weixin.qq.com/s?__biz=MzI3NDAWNDUwNg==&mid=2648307335&idx=1&sn=8eb9f63eaf2e40e24a90601b9cc03d1f

Distributed Training in BigDL

Data parallel

Iterative Mini-batch

/ Training “Data parallel” vs

/

for (i <- 1to N) {
batch = next_batch()
output = model.forward(batch.input)
loss = criterion.forward(output, batch.target)
error = criterion.backward(output, batch.target)
model.backward(input, error) Runtime
optimMethod.optimize(model.weight, model.gradient) complexity

“Model parallel”

Synchronous SGD

Run as a standard Spark program

» Standard Spark jobs

* No changes to the Spark or Hadoop clusters
needed

* |terative

» Each iteration of the training runs as a Spark
job

BigDL Program

DL App on Driver

Standard
Spark jobs

Spark
Program

BigDL
library

Data parallel

» Each Spark task runs the same model on a
subset of the data (batch)

Worker

Spark
Task

Worker Worker

BigDL lib

—_

Worker Worker Worker

Spark
BigDL li
Task . -

Considerations in large-scale distributed training

« Optimizing parameter synchronization and aggregation

» Optimizing task scheduling

» Scaling batch size

Parameter Synchronization in Spark MLLlib

@® Each task computes e

Training Set

Partition 1

Sample

Worker

| — .
Par n2 B
Workes—"
>

Sampl

gradients

Driver
@ Broadcast weight
to each worker

@® Each task sends gradients
for (tree) aggregation, and

® then driver updates the
weight

Parameter Synchronization in BigDL

PS (Parameter Server) Architecture in BigDL
on top of Spark Block Manager

(3] 5 '3 5 3] 5
Gradient @ Weight Gradient g Weight Gradient @ Weight

/1 - /1 me oam| [l:]jO =1
Worker ‘ /“\ auw Worker ‘
o

Partition 1 Partition 2 Partition n

Training Set

Peer-2-Peer All-Reduce synchronization

Performance of BigDL Parameter Synchronization

—

20
Nodes

Parameter synchronization time as a fraction of
average compute time for Inception v1 training

Spark Task Scheduling Overheads

200 300
Tasks

Spark overheads (task scheduling, task serde, task fetch) as
a fraction of average compute time for Inception v1 training

BigDL + “Drizzle”

» A low-latency execution engine for
Apache Spark, packaged in BigDL

» Fine-grained execution with coarse-

grained scheduling

» Group scheduling

» Scheduling a group of iterations at
once

» Fault tolerance, scheduling at group
boundaries

» Coordinating shuffles: pre-
scheduling

» Pre-schedule tasks on executors

» Trigger tasks once dependencies are
met

Group Scheduling Pre-Scheduling Shuffles

Micro-Batch :

Spark Task Scheduling Overheads, Redux

Spark Overhead (Inception v1)

——Spark Overhead
——Spark Overhead (w/ Drizzle)

Drizzle increases mini-batch size

» Distributed synchronous mini-batch SGD

total_batch_size = batch_size_per_worker *

* |ncreased mini-batch size num_of_workers

* Can lead to loss in test accuracy

« State-of-art method for scaling mini-batch size

» Linear scaling rule

 Warm-up

» Layer-wise adaptive rate scaling
» Adding batch normalization

“Accurate, Large Minibatch SGD:
Training ImageNet in 1Hour”

“Scaling SGD Batch Size to 32K
for ImageNet Training”

Want to get started?

* As easy as pip install
» https://bigdl-project.github.io/master/#PythonUserGuide/install-from-pip/
» (add to custom Python startup script for Dataproc)

» A few configuration changes to make on Dataproc, but not too bad

e https://github.com/intel-
analytics/BigDL/blob/master/docs/docs/ProgrammingGuide/run-on-
dataproc.md

If you use the Java API...

» Deep Learning For Java (DL4J)
» https://deeplearning4j.org/

 Full GPU support

» Parameter server training for Spark-
based applications

» Requires a bit more setup and
configuration
» Especially if using GPUs
 Phenomenal docs on getting started
with deep learning theory

Questions?

" WHRE G!INNA!{EEI]

X s

References

» https://bigdl-project.github.io/master/#
s hitps://github.com/intel-analytics/BigDL/

Project Notes

* P1is due Thursday, February 1 at 11:59:59pm.

» AutoLab shuts down, and | stop considering changes on GitHub

» P2 will be released on Thursday!
AutoLab assignment will show up
Teams will be announced on Slack
Due Thursday, February 15 (2 weeks) at 11:59:59pm.

» P1 Lightning Talks next Wednesday!
Each team gives a 5-minute overview of their work (slides please)

Highlight the approach you took (theory, engineering, teamwork) and how it
paid off (or not)—what worked, what didn’t, what you’d keep, what you’d
change

Teams will be called up randomly, so be ready to go!

