
Spark BigDL
© Intel

Slides based heavily on those by Jason Dai and Ding Ding,
taken from AI Conference 2017 San Francisco



What is BigDL?

• BigDL is a deep learning library built 
for Apache Spark

• Make deep learning more accessible
• Write deep learning applications as 

standard Spark programs
• Run on existing Spark/Hadoop clusters 

(no changes needed)

• Feature parity with Caffe, Torch, 
TensorFlow

• High-performance Intel MKL library in 
tasks, efficient all-reduce and SGD at 
scale

• Works with pre-trained Keras, Caffe, 
or Torch models



Making deep learning accessible



BigDL’s Goals

• Make deep learning more accessible to big data and data science 
communities

• Continue the use of familiar software tools (Spark) and hardware infrastructure 
(Hadoop clusters) to build deep learning applications

• Analyze “big data” using deep learning on the same Hadoop/Spark cluster 
where the data are stored

• Add deep learning functionalities to the Big Data (Spark) programs and/or 
workflow

• Leverage existing Hadoop/Spark clusters to run deep learning applications
• Shared with other workloads (e.g., ETL, data warehouse, feature engineering, statistic 

machine learning, graph analytics, etc.) in a dynamic and elastic fashion



Case Study: Fraud Detection for UnionPay

https://mp.weixin.qq.com/s?__biz=MzI3NDAwNDUwNg==&mid=2648307335&idx=1&sn=8eb9f63eaf2e40e24a90601b9cc03d1f



Distributed Training in BigDL

“Data parallel” vs 
“Model parallel”

Runtime 
complexity



Run as a standard Spark program

• Standard Spark jobs
• No changes to the Spark or Hadoop clusters 

needed

• Iterative
• Each iteration of the training runs as a Spark 

job

• Data parallel
• Each Spark task runs the same model on a 

subset of the data (batch)



Considerations in large-scale distributed training

• Optimizing parameter synchronization and aggregation

• Optimizing task scheduling

• Scaling batch size



Parameter Synchronization in Spark MLlib



Parameter Synchronization in BigDL



Performance of BigDL Parameter Synchronization



Spark Task Scheduling Overheads



BigDL + “Drizzle”

• A low-latency execution engine for 
Apache Spark, packaged in BigDL

• Fine-grained execution with coarse-
grained scheduling

• Group scheduling
• Scheduling a group of iterations at 

once
• Fault tolerance, scheduling at group 

boundaries

• Coordinating shuffles: pre-
scheduling
• Pre-schedule tasks on executors
• Trigger tasks once dependencies are 

met



Spark Task Scheduling Overheads, Redux



Drizzle increases mini-batch size

• Distributed synchronous mini-batch SGD
• Increased mini-batch size
• Can lead to loss in test accuracy

• State-of-art method for scaling mini-batch size
• Linear scaling rule
• Warm-up
• Layer-wise adaptive rate scaling
• Adding batch normalization

total_batch_size = batch_size_per_worker * 
num_of_workers

“Accurate, Large Minibatch SGD: 
Training ImageNet in 1Hour”

“Scaling SGD Batch Size to 32K 
for ImageNet Training”



Want to get started?

• As easy as pip install
• https://bigdl-project.github.io/master/#PythonUserGuide/install-from-pip/
• (add to custom Python startup script for Dataproc)

• A few configuration changes to make on Dataproc, but not too bad
• https://github.com/intel-

analytics/BigDL/blob/master/docs/docs/ProgrammingGuide/run-on-
dataproc.md



If you use the Java API…

• Deep Learning For Java (DL4J)
• https://deeplearning4j.org/

• Full GPU support

• Parameter server training for Spark-
based applications

• Requires a bit more setup and 
configuration
• Especially if using GPUs

• Phenomenal docs on getting started 
with deep learning theory



Questions?



References

• https://bigdl-project.github.io/master/#

• https://github.com/intel-analytics/BigDL/



Project Notes

• P1 is due Thursday, February 1 at 11:59:59pm.
• AutoLab shuts down, and I stop considering changes on GitHub

• P2 will be released on Thursday!
• AutoLab assignment will show up
• Teams will be announced on Slack
• Due Thursday, February 15 (2 weeks) at 11:59:59pm.

• P1 Lightning Talks next Wednesday!
• Each team gives a 5-minute overview of their work (slides please)
• Highlight the approach you took (theory, engineering, teamwork) and how it 

paid off (or not)—what worked, what didn’t, what you’d keep, what you’d 
change

• Teams will be called up randomly, so be ready to go!


