What is BigDL?

• BigDL is a deep learning library built for Apache Spark
• Make deep learning more accessible
 • Write deep learning applications as standard Spark programs
 • Run on existing Spark/Hadoop clusters (no changes needed)
• Feature parity with Caffe, Torch, TensorFlow
• High-performance Intel MKL library in tasks, efficient all-reduce and SGD at scale
• Works with pre-trained Keras, Caffe, or Torch models
Making deep learning accessible

The Chasm

Deep learning experts

Average users (data engineers, data scientists, analysts, etc.)
BigDL’s Goals

- Make deep learning more accessible to big data and data science communities
- Continue the use of familiar software tools (Spark) and hardware infrastructure (Hadoop clusters) to build deep learning applications
- Analyze “big data” using deep learning on the same Hadoop/Spark cluster where the data are stored
- Add deep learning functionalities to the Big Data (Spark) programs and/or workflow
- Leverage existing Hadoop/Spark clusters to run deep learning applications
 - Shared with other workloads (e.g., ETL, data warehouse, feature engineering, statistic machine learning, graph analytics, etc.) in a dynamic and elastic fashion
Case Study: Fraud Detection for UnionPay

https://mp.weixin.qq.com/s?__biz=MzI3NDAwNDUwNg==&mid=2648307335&idx=1&sn=8eb9f63eaf2e40e24a90601b9cc03d1f
Distributed Training in BigDL

```
for (i <- 1 to N) {
  batch = next_batch()
  output = model.forward(batch.input)
  loss = criterion.forward(output, batch.target)
  error = criterion.backward(output, batch.target)
  model.backward(input, error)
  optimMethod.optimize(model.weight, model.gradient)
}
```

Iterative
Mini-batch
Synchronous SGD

“Data parallel” vs “Model parallel”
Runtime complexity
Run as a standard Spark program

- Standard Spark jobs
 - No changes to the Spark or Hadoop clusters needed
- Iterative
 - Each iteration of the training runs as a Spark job
- Data parallel
 - Each Spark task runs the same model on a subset of the data (batch)
Considerations in large-scale distributed training

• Optimizing parameter synchronization and aggregation

• Optimizing task scheduling

• Scaling batch size
Parameter Synchronization in Spark MLlib
Parameter Synchronization in BigDL

PS (Parameter Server) Architecture in BigDL on top of Spark Block Manager

Training Set

Peer-2-Peer All-Reduce synchronization
Performance of BigDL Parameter Synchronization

Parameter synchronization time as a fraction of average compute time for Inception v1 training
Spark Task Scheduling Overheads

Spark overheads (task scheduling, task serde, task fetch) as a fraction of average compute time for Inception v1 training
BigDL + “Drizzle”

- A low-latency execution engine for Apache Spark, packaged in BigDL
- Fine-grained execution with coarse-grained scheduling
- Group scheduling
 - Scheduling a group of iterations at once
 - Fault tolerance, scheduling at group boundaries
- Coordinating shuffles: **pre-scheduling**
 - Pre-schedule tasks on executors
 - Trigger tasks once dependencies are met
Spark Task Scheduling Overheads, Redux

Spark Overhead (Inception v1)

- Spark Overhead
- Spark Overhead (w/ Drizzle)

Tasks

0 200 400 600 800

0% 2% 4% 6% 8% 10% 12%
Drizzle increases mini-batch size

- Distributed synchronous mini-batch SGD
 - Increased mini-batch size
 - Can lead to loss in test accuracy

- State-of-art method for scaling mini-batch size
 - Linear scaling rule
 - Warm-up
 - Layer-wise adaptive rate scaling
 - Adding batch normalization

\[
\text{total_batch_size} = \text{batch_size_per_worker} \times \text{num_of_workers}
\]

“Accurate, Large Minibatch SGD: Training ImageNet in 1Hour”

“Scaling SGD Batch Size to 32K for ImageNet Training”
Want to get started?

- As easy as *pip install*
 - (add to custom Python startup script for Dataproc)

- A few configuration changes to make on Dataproc, but not too bad
 - https://github.com/intel-analytics/BigDL/blob/master/docs/docs/ProgrammingGuide/run-on-dataproc.md
If you use the Java API...

- Deep Learning For Java (DL4J)
 - https://deeplearning4j.org/
- Full GPU support
- Parameter server training for Spark-based applications
- Requires a bit more setup and configuration
 - Especially if using GPUs
- Phenomenal docs on getting started with deep learning theory
Questions?

WE'RE GONNA NEED

A GPU
References

- https://bigdl-project.github.io/master/#
- https://github.com/intel-analytics/BigDL/
Project Notes

• P1 is due **Thursday, February 1 at 11:59:59pm.**
 • AutoLab shuts down, and I stop considering changes on GitHub

• P2 will be released on Thursday!
 • AutoLab assignment will show up
 • Teams will be announced on Slack
 • Due Thursday, February 15 (2 weeks) at 11:59:59pm.

• P1 Lightning Talks *next Wednesday*!
 • Each team gives a 5-minute overview of their work (slides please)
 • Highlight the approach you took (theory, engineering, teamwork) and how it paid off (or not)—what worked, what didn’t, what you’d keep, what you’d change
 • Teams will be called up randomly, so be ready to go!