
Recommender Systems

Rob Hall
rob.hall@faire.com

Search and Personalization Team
Faire



Recommender system setup.

Collaborative filtering heuristics: item / user based CF.

Matrix factorization based methods.

Cool techniques: alternating least squares, locality sensitive
hashing.



Recommender Systems

Basic idea: recommend items to users based on their past behavior.



Recommender Systems

Basic idea: recommend items to users based on their past behavior.



Recommender Systems

Basic idea: recommend items to users based on their past behavior.



Recommender Systems

Say we have n users and m items. We get to see a partially complete
matrix X ∈ Rn×m:



Recommender Systems

Implicit feedback: we dont get ratings just indicators of whether a
user interacted with an item. Different setups, observe ratings vs
observe implicit feedback.



Recommender Systems

Basic idea: predict which unseen items a user would rate highly /
interact with.

Techniques:
Similarity based (item / user).
Matrix completion.



Item-based Collaborative Filtering

Consider the cosine similarity between items j and k:

sim(j, k) =

∑n
i=1 xi,jxi,k√∑n

i=1 x2
i,j

√∑n
i=1 x2

i,k

i.e., the angle between columns j and k of the input matrix.

Tells us how similar the items are based on the ratings / interactions
given by users.
Note: treating unknown values in the matrix as zero.



Item-based Collaborative Filtering

sim =
2√

2
√

3
≈ 0.82



Item-based Collaborative Filtering

sim =
1√

1
√

2
≈ 0.71



Item-based Collaborative Filtering

sim =
0√
2
√

2
= 0



Item-based Collaborative Filtering

We can build the m× m
similarity matrix.

Doable for m upto 100K or
so – more if we can
leverage sparsity in X.



Item-based Collaborative Filtering

For user i, recommend the items which have the highest values of:

score(i, k) =

m∑
j=1

xi,j sim(j, k)

i.e., the items most similar to those that the user interacted with.

Computing the scores is just a big
(sparse) matrix multiply.



Item-based Collaborative Filtering

For user i, recommend the items which have the highest values of:

score(i, k) =

m∑
j=1

xi,j sim(j, k)

i.e., the items most similar to those that the user interacted with.

Computing the scores is just a big
(sparse) matrix multiply.



Item-based Collaborative Filtering

Tripadvisor destination recommender “most similar items:”



Item-based Collaborative Filtering

Tripadvisor recommendation example:



Item-based Collaborative Filtering

Works well when number of items is small (since you have to
compute the similarity matrix).

Very simple to implement.

Easy to explain recommendations (“because you liked item XXX
and YYY”).



User-based Collaborative Filtering

Similar idea (less popular in practise).

Basic idea:
Compute similarity score between users (e.g., cosine similarity)
Find nearest neighbors to each user
Recommend the most popular items among the nearest neighbors.



Matrix Factorization

Matrix Factorization: powerful technique for recommender
systems (e.g., netflix prize winner).

Basic idea:
Assume a set of vectors ui ∈ Rd for user, and vj ∈ Rd for each
item.
The score for how well user i likes item j given by uT

i vj.
Fit the vectors to minimize error on the observed ratings.
Use them to predict the unseen ratings.



Matrix Factorization

Model is
conceptually
plausible.

However we
won’t know
what the
dimensions
“mean.”



Matrix Factorization

For user i, recommend the items which have the highest values of:

score(i, j) = uT
i vj

Computing the scores is a big
dense matrix product.

Later: approximation methods.



Matrix Factorization

Input X ∈ Rn×m with set of weights W (e.g., observed entries have
weight 1, unobserved entries have weight ε).

Goal: find matrices U,V with rank d which minimize the error:∑
i,j

wi,j
(
xi,j − uT

i vj
)2

i.e, weight observed values higher than unobserved values (zeros).

note: related to matrix completion which tries to fill in the matrix
directly rather than via U,V .



Matrix Factorization

Simple Approach: compute SVD truncated to rank d: X ≈ LΣRT .
Let

U = LΣ1/2, V = RΣ1/2

i.e., factors just given by first d singular vectors.

Pros: trivial operation (can approximate the SVD). Actually
works ok in practice.

Cons: fitting optimizes the error assuming wi,j = 1 – i.e., we
treated the zeros as ratings rather than unknown entries.



Matrix Factorization

Simple Approach: compute SVD truncated to rank d: X ≈ LΣRT .
Let

U = LΣ1/2, V = RΣ1/2

i.e., factors just given by first d singular vectors.

Pros: trivial operation (can approximate the SVD). Actually
works ok in practice.

Cons: fitting optimizes the error assuming wi,j = 1 – i.e., we
treated the zeros as ratings rather than unknown entries.



Matrix Factorization

Alternating Least Squares (ALS): alternate between U and V and
optimize the objective: ∑

i,j

wi,j
(
xi,j − uT

i vj
)2

Initialize V with some random noise (e.g., N (0, 1)).
Iterate until convergence:

Hold V fixed and compute U to minimize the objective.
Hold U fixed and compute V to minimize the objective.

Each step will decrease the objective function until we get to a local
minimum.



Matrix Factorization

Update rule (differentiate objective and set equal to zero):

ui =

∑
j

wi,jvjvT
j

−1∑
j

wi,jxi,jvj

vj =

(∑
i

wi,juiuT
i

)−1∑
i

wi,jxi,jui

Very similar to the form of the ordinary least squares estimator.

Computation is easy to parallelize since each ui can be found
separately from the others.



Matrix Factorization

Using ALS to
approximate the best
low rank
approximation to a
matrix (where
wi,j = 1).

Compared to SVD
(the best possible).



Matrix Factorization

End up with an
embedding of items
and users into Rd.

Score = dot product
= related to the angle
between the user and
item.



Matrix Factorization

Computing the recommendations = n× m dot products.

We cant do this when n,m are large (millions or more).

Possible solutions:

Try to do something hierarchical (recommend a category, then
recommend items in the category).

Use an approximation scheme to compute approximate
recommendations.



Matrix Factorization

Can augment the
embedding so the
items all have unit
norm, without
affecting the scores
(add a dimension)

Then we have an
embedding where
score = dot product
= ‖ui‖ cos(θ).



Matrix Factorization

Reduced the
recommendation
problem to finding
nearest neighbors
under the cosine
similarity.

Can approximate
this using Locality
Sensitive Hashing
(LSH).



Matrix Factorization

Locality Sensitive Hashing: set up a hash function H(v) so for a pair
of vectors u, v:

P[H(v) = H(u)] is small when u, v are far apart.

P[H(v) = H(u)] is large when u, v are close together.

Then we can approximate nearest-neighbors by hashing all the vectors
and comparing each vector to the others in the same hash bucket.



Matrix Factorization

LSH idea: generate
a hash code H(v),
where each bit
Hi(v) = sign(vTzi)
where zi is a random
direction (e.g.,
gaussian).



Matrix Factorization

LSH idea: generate
a hash code H(v),
where each bit
Hi(v) = sign(vTzi)
where zi is a random
direction (e.g.,
gaussian).



Matrix Factorization

LSH idea: generate
a hash code H(v),
where each bit
Hi(v) = sign(vTzi)
where zi is a random
direction (e.g.,
gaussian).



Matrix Factorization

Then only compare
users to the items
that end up in the
same hash bucket as
them.



Matrix Factorization

Does LSH work?

Say uTv = ‖u‖‖v‖ cos(θ) then:

P (Hi(u) 6= Hi(v)) =
θ

180

So for b bits:

P (H(u) = H(v)) =

(
1− θ

180

)b

i.e., probability vanishes quickly when θ is larger.

To improve recall, we can just repeat the procedure a few times.



Recommender system setup / CF heuristics.

Matrix factorization based methods / Alternating Least Squares.

Approximating recs / KNN using locality sensitive hashing.


